
Lingxi Shi (MSE), Bryant Hartanto (MSE)

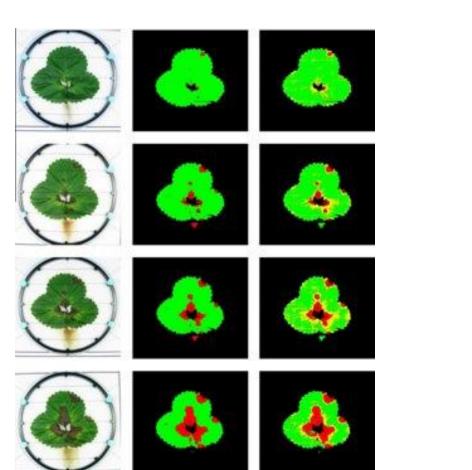
. Problem Statement

Current imaging systems in phenotyping research are either too expensive or too cumbersome for small and medium size plant imaging. Handmade systems available at low costs usually have inadequate functionalities to accommodate the needs in different researches. The limitation has quickly become a key bottleneck for the development and application of high throughput plant phenotyping technologies in biological research. The major outcome of our design is a low-cost, versatile multispectral imaging system.

2. Background

Plant Phenotyping: a quantitative analysis of the plant's properties. Plant phenotyping is an emerging science that links genomics with plant ecophysiology and agronomy. Image-based phenotyping develops rapidly today. The characterization of the plant performance can be achieved from image analysis, including but not limited to plant size, leaf angle, and nutrition factor. Impact: Improving plant productivity is key to address major economic, ecological and societal challenges. It's necessary and urgent to increase the capacity of the plant science community to analyze the plant's performance with quantitative tools. Advances in plant phenotyping are therefore a key factor for success in modern breeding and basic plant research.

 \succ The relation and reaction among environment, genotype and phenotype


3. Factors Considered					
Considered Factors	Yes/ No	Yes, it is important, and why; or No, it is not important, and why			
Public Health	No	Product is used only by researchers.			
Public Safety	No	Product is used only by researchers.			
Public Welfare	Yes	Life would be better if more scientist can use an imaging system.			
Global Factors	Yes	With less cost, our product lets wider range for researchers to conduct plant phenotypical analysis.			
Cultural Factors	No	Any researchers with any background			

Cultural l'actors		can use this product freely.
Social Factors	Yes	The product is used by Agricultural- related people.
EnvironmentalFac tors	Yes	Our product has to be environmentally friendly.
Economic Factors	Yes	Our goal is to compete in the market.

Sponsor: Yang, Yang Director of Digital Phenomics, Purdue University

PURDUE UNIVERSITE NUMBER OF STREET

Agricultural and **Biological Engineering**

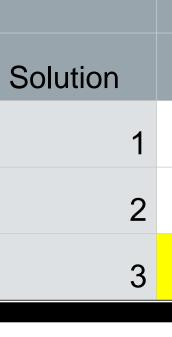
Example image for a strawberry plant in image-based phenotyping analysis

4. Constrains & Criteria

Constrains:

- Size: adequate for small to medium size plant (e.g. Arabidopsis, tomato seedlings) Weight: bearable by a normal lab bench
- Functionality:
- multispectral with at least five color channel including R G B
- Capable of acquiring images from top and side view

Criteria:


- Adaptability
- Cost:
- Prototype Phase: Purchase + Labor
- Quantity Production: Price + Delivery
- Versatile functions
- User-friendly
- Safety

Technical Advisor: Jin, Jlan

5. Alternative Solutions: The main problem the team must solve is the choice of the camera and lighting system to obtain multispectral images of good quality. Use one multispectral camera with more than 4 color

- camera.

Decision Matrix: the decision-making tool that help us to chose the final solution. The third solution gives the highest score. It is the final design.

6. Tools and Design of Solution

- The lens calculator is used to help us find the best parameters of the lens with the proper mounting type, focal length and sensor size.
- The budget analysis is one of the most important part of the design of solution as our goal is a low-cost system. The budget will be around 2,200 dollars.
- The LEDs are chosen based on

Budget analysis

Budget Anal amera expenses ame expense

Instructors: John Lumkes

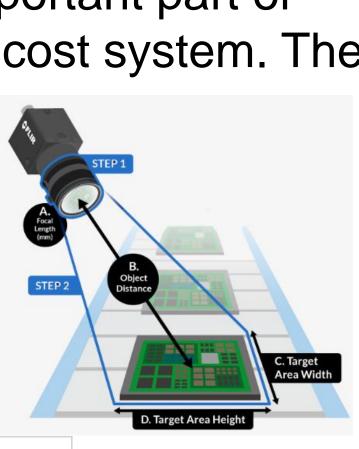
CAPSTONE/SENIOR DESIGN EXPERIENCE 2020

YY-1: Image System for Plant Phenotyping

bands filter array.

2. Use a monochrome camera with full-spectrum light and different color filters to adjust the inlet lighting of the

3. Use LED lights with different color channels to achieve multispectral functionality and a monochrome camera.


Score scale: 1 to 5:

Criteria	Adaptable	Cost	Versatility	Safety	Simplicity	Noise	Sum
Weight	0.2	0.3	0.2	0.2	0.05	0.05	1
Score	2	1	5	5	5	5	0.64
Score	4	4	4	5	2.5	3	0.81
Score	4	5	4	5	4	4	0.90

We use several tools for the design.

The 3D modeling has been built in Creo Parametrics.

- their wave length and price.

Lens Calculator

alysis fo	or G	roup Y	Υ-	1 - Ben	ch-top l	mage Syst	em	for Pla	ant	Phenot	typing	
S					Lighting					unit price	Qut	
lackfly USI	В\$	519.00				400nm	\$	44.70	\$	0.75	60	
Lens	\$	300.00				532nm	\$	32.40	\$	0.54	60	
					LEDs	blue	\$	3.00	\$	0.05	60	
						660nm	\$	10.80	\$	0.18	60	
1-1-1						880nm	\$	20.52	\$	0.34	60	
total		_	\$	819.00		total		_	\$	111.42		
					Signal tra	nsition						
Rail	\$	135.00	-\$1	0.6/3ft * 8		Cable & Wire	\$	70.00		-		
Bracket	\$	192.00		\$8/ea *24		Other	\$	70.00				
Roller	\$	35.00				total		_	\$	140.00		▲ Creo
Panel	\$	300.00			Other							
crew on	\$	24.00		\$6 * 4		Delivery	\$	80.00				modeling of
Felt	\$	50.00				Tax	\$	138.00				•
						Other	\$	100.00				the top side adaptor
total			\$	736.00		total			\$	318.00		adantor
									\$	2,1	<mark>.24.42</mark>	auapiui

Acknowledgements: Dr. Lumkes Dr. Liangju Wang Mr. Yikai Li

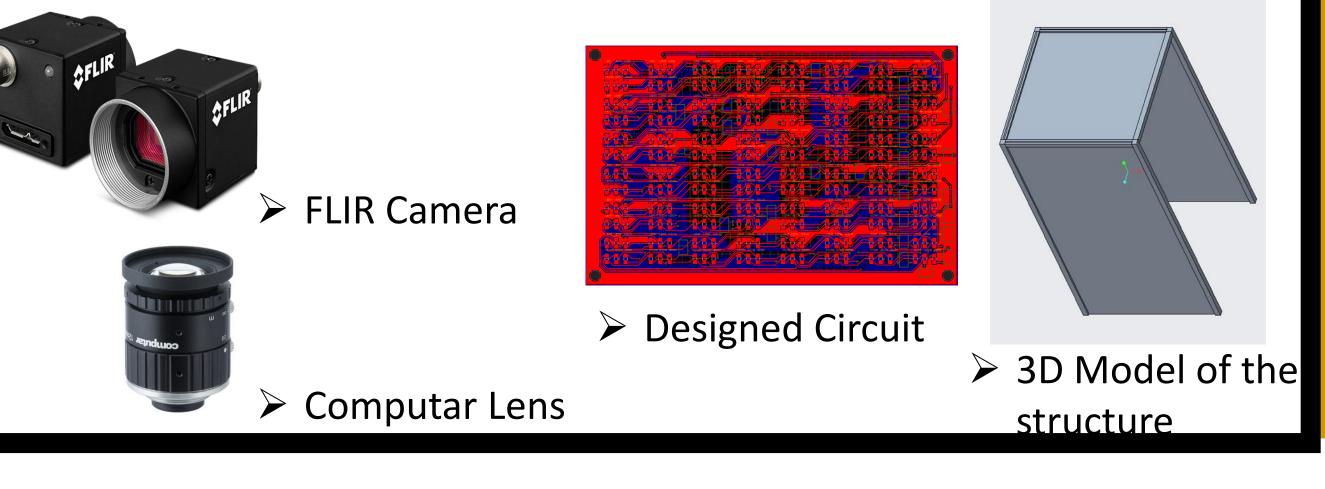
7. Final Design

Camera

The final choice of camera is model BFLY-U3-23S6M-C from FLIR.

• Lens

The final choice of lens is model V1226-MPZ from Computar. Physical structure


The physical device implement the T-slotted framework. Acrylic felt will be used to cover all the side board to create the light-proof environment.

Lighting system

There are five types of LED lights providing five different wave length of lighting to achieve the multispectral functionality. The LED circuit board resembles the design shown below. The lens is implemented at the hole in the middle of the LED board, the lights going around the lens to provide lighting with no shade. And a layer of Teflon covers the LED board to make the lighting symphonious.

Operation context

The entire system will work under the Visual Studio context using C language as the programming context.

8. Process Implement Plan

There are several steps for the future implement:

Step 1: Purchase everything on the list. The items that already delivered are the camera and red LED lights.

Step 2: Assemble the rails and brackets to build the physical frame and structure

Step 3: Weld the LEDs on the circuit as designed. Make adjustment for optimal brightness and clearness.

Step 4: Continue to finish the program and interface for the operation of the camera.

Step 5: Test the camera with the program under LED lighting. Refer to the photo result, make adjustment and optimization.

Step 6: Install the components into the structure. Design the pattern of the entrance and exit of the plant.

Step 7: Arrange all the cables and wires to make it integrate and invisible on the outside.

Step 8: Finish the prototype.